Skip to content

Team

October 2022

Biodiesel feedstock determines exhaust toxicity in 20% biodiesel: 80% mineral diesel blends

To address climate change concerns, and reduce the carbon footprint caused by fossil fuel use, it is likely that blend ratios of renewable biodiesel with commercial mineral diesel fuel will steadily increase, resulting in biodiesel use becoming more widespread.

Published research Airway Epithelial Research Respiratory Environmental Health Subsite: Walyan
September 2022

Biodiesel Exhaust Toxicity with and without Diethylene Glycol Dimethyl Ether Fuel Additive in Primary Airway Epithelial Cells Grown at the Air-Liquid Interface

Biodiesel usage is increasing steadily worldwide as the push for renewable fuel sources increases. The increased oxygen content in biodiesel fuel is believed to cause decreased particulate matter (PM) and increased nitrous oxides within its exhaust.

Published research Airway Epithelial Research Respiratory Environmental Health Subsite: Walyan
April 2022

Toxicity of different biodiesel exhausts in primary human airway epithelial cells grown at air-liquid interface

Biodiesel is created through the transesterification of fats/oils and its usage is increasing worldwide as global warming concerns increase. Biodiesel fuel properties change depending on the feedstock used to create it.

Published research Airway Epithelial Research Respiratory Environmental Health